The lab: Martins group
Research in the Lymphocyte development and Leukemogenesis Laboratory focuses on T lymphocyte development, both under steady state, physiological conditions, as well as in leukemia. T lymphocyte development occurs mostly in the thymus from progenitors of bone marrow origin in a process that involves high cellular turnover. The research team found that thymus turnover is regulated by cell competition. Specifically, the seeding of the thymus by ‘young’ hematopoietic precursors (with a short dwell time in the thymus) led to the clearance of the ‘old’ precursors (residing for longer in the thymus).
Importantly, cell competition is not cell autonomous, i.e., it is the presence of the young that induce the clearing of the old. Consistently, when no progenitors seed the thymus, i.e., if no cell competition took place, old precursors persisted in the thymus, self-renewed, and for some time gave rise to T lymphocytes. In other words, autonomously maintained thymus function. Nevertheless, while apparently beneficial for a short period, prolonged thymus autonomy led to aggressive T cell acute lymphoblastic leukemia with strong similarities with the human disease. The Lymphocyte development and Leukemogenesis Laboratory focuses on the identification of the cellular and molecular mechanisms governing cell competition in normal thymus turnover, and on the changes associated with the malignant transformation of T lymphocyte precursors as a consequence of impaired cell competition.

Other positions
- IDIBAPS#4 – Mechanisms involved in strenuous exercise-induced atrial myocardial fibrosisDavid Brena2022-06-02T10:51:50+00:00
IDIBAPS#4 – Mechanisms involved in strenuous exercise-induced atrial myocardial fibrosis
- IC#4 – The role polyglutamylation in tauopathic neurodegenerationDavid Brena2022-05-18T16:35:32+00:00
IC#4 – The role polyglutamylation in tauopathic neurodegeneration
- IC#3 – Evaluation of the efficiency of immunotherapy by tracing ctDNA in metastatic NSCLC and triple-negative breast cancer patientsDavid Brena2022-05-18T16:17:43+00:00
IC#3 – Evaluation of the efficiency of immunotherapy by tracing ctDNA in metastatic NSCLC and triple-negative breast cancer patients
- IC#2 – New targetable vulnerabilities for the treatment of chemoresistant breast and ovarian BRCA1/2-mutated tumorsDavid Brena2022-05-25T10:09:18+00:00
IC#2 – New targetable vulnerabilities for the treatment of chemoresistant breast and ovarian BRCA1/2-mutated tumors
- IDIBAPS#3 – Mechanisms involved in vascular inflammation/remodeling in systemic vasculitisDavid Brena2022-05-17T10:38:48+00:00
IDIBAPS#3 – Mechanisms involved in vascular inflammation/remodeling in systemic vasculitis
- IDIBAPS#2 – Mechanisms and therapies for Myeloma, amyloidosis, macroglobulinemia and other gammapathiesDavid Brena2022-05-24T08:49:06+00:00
IDIBAPS#2 – Mechanisms and therapies for Myeloma, amyloidosis, macroglobulinemia and other gammapathies
- IDIBAPS#1 – Developing and investigating computing, machine learning and physiological modelling for understanding each individual heart towards personalised medicineDavid Brena2022-05-17T10:37:53+00:00
IDIBAPS#1 – Developing and investigating computing, machine learning and physiological modelling for understanding each individual heart towards personalised medicine
- BRIC#6 – Tumour evolution, heterogeneity, and understanding of the mutational processes leading to aggressive diseaseDavid Brena2022-05-12T16:57:52+00:00
BRIC#6 – Tumour evolution, heterogeneity, and understanding of the mutational processes leading to aggressive disease
- IC#1 – The role of RNASE1 in lung metastatic niche establishment by breast cancer cellsemerald_SCS2022-05-17T13:59:30+00:00
IC#1 – The role of RNASE1 in lung metastatic niche establishment by breast cancer cells
- MDC#3 – Neuromuscular and Cardiovascular Cell Biologyemerald_SCS2022-05-17T12:04:54+00:00
MDC#3 – Neuromuscular and Cardiovascular Cell Biology
- MDC#2 – Molecular and cellular basis of behavioremerald_SCS2022-05-17T12:05:10+00:00
MDC#2 – Molecular and cellular basis of behavior
- MDC#1 – Host-microbiome factors in cardiovascular diseaseemerald_SCS2022-05-17T12:05:25+00:00
MDC#1 – Host-microbiome factors in cardiovascular disease
- NKI#1 – Epigenetic regulation in hormone-driven cancers and therapy resistanceemerald_SCS2022-05-19T08:58:30+00:00
NKI#1 – Epigenetic regulation in hormone-driven cancers and therapy resistance
- VIB#8 – Mechanisms of inflammation and associated tissue damage in musculoskeletal diseasesemerald_SCS2022-05-16T20:44:33+00:00
VIB#8 – Mechanisms of inflammation and associated tissue damage in musculoskeletal diseases
- VIB#7 – Endothelial immunosuppressive mystery genes for alternative immunotherapy: artificial intelligence-driven target discovery and validationemerald_SCS2022-05-16T20:32:47+00:00
VIB#7 – Endothelial immunosuppressive mystery genes for alternative immunotherapy: artificial intelligence-driven target discovery and validation
- VIB#6 – Cellular metabolism and metabolic regulation in cancer metastasisemerald_SCS2022-05-18T08:52:10+00:00
VIB#6 – Cellular metabolism and metabolic regulation in cancer metastasis
- VIB#5 – Unraveling the molecular mechanisms of neuronal degeneration in motor neuron diseasesemerald_SCS2022-05-16T19:39:35+00:00
VIB#5 – Unraveling the molecular mechanisms of neuronal degeneration in motor neuron diseases
- VIB#4 – Identification of universal biomarkers of metastatic melanoma in CTCsemerald_SCS2022-05-18T08:43:51+00:00
VIB#4 – Identification of universal biomarkers of metastatic melanoma in CTCs
- VIB#3 – Basic mechanisms of Alzheimer’s disease and neurodegenerationemerald_SCS2022-05-16T19:54:56+00:00
VIB#3 – Basic mechanisms of Alzheimer’s disease and neurodegeneration
- VIB#2 – Integrative genomics to underpinning somatic evolution, tumour heterogeneity, and treatment resistanceemerald_SCS2022-05-15T23:07:12+00:00
VIB#2 – Integrative genomics to underpinning somatic evolution, tumour heterogeneity, and treatment resistance
- VIB#1 – Medical biotechnology to improve hepatocellular carcinoma diagnosticsemerald_SCS2022-05-24T08:33:04+00:00
VIB#1 – Medical biotechnology to improve hepatocellular carcinoma diagnostics
- BRIC#5 – The impact of severe maternal respiratory tract infections on fetal brain development and offspring behavioremerald_SCS2022-05-19T18:49:58+00:00
BRIC#5 – The impact of severe maternal respiratory tract infections on fetal brain development and offspring behavior
- BRIC#7 – Understanding and overcoming drug resistance in acute myeloid leukemiaemerald_SCS2022-05-24T08:43:03+00:00
BRIC#7 – Understanding and overcoming drug resistance in acute myeloid leukemia