The lab: Ferrer group
Lab's research themes:
The main aim of the lab of lab is to work on beta-cell regulatory genomics, genetics, and modeling diabetes to find new therapies.
Professor Ferrer is interested in understanding the genome regulation of pancreatic beta cells and its implications for human diabetes. His team has combined genetic model systems and advanced genomics to address key questions in human beta cell biology, regeneration, and disease.
Diabetes mellitus afflicts more than 400 million people. Current strategies to prevent and treat diabetes are limited by our scant knowledge of the molecular defects that cause diabetes. We focus on understanding changes in genome regulation that lead to monogenic and polygenic diabetes. We study the gene networks that are essential for insulin-producing beta cells to maintain glucose homeostasis, and develop strategies to manipulate these networks in human patients. We are also interested in how gene regulatory mechanisms can be harnessed for regenerative therapies in autoimmune diabetes. To achieve these goals, we combine regulatory genomics, human genetics, and genome engineering in model systems.
Merits of the lab:
The lab created the first genome maps of human pancreatic regulatory elements, and defined the role of noncoding variants in polygenic type 2 diabetes, and in rare Mendelian forms of diabetes. It coordinates a project to discover genetic mechanisms of diabetes through whole genome sequencing of a large cohort of patients with non-autoimmune young-onset diabetes. It combines mouse genetics, genome editing, single cell genomics and stem cell differentiation models to understand the role of noncoding defects in human disease. .
Why do we want medical doctors?
The team is highly multidisciplinary. It is composed of members with diverse backgrounds (biotechnology, biology, medical, engineering) and includes individuals with expertise in computational genomics, human genetics, single cell genomics, mouse genetics and genome editing in human stem cells.
The position


What’s the main purpose of our research?
Our lab is focused on the study of the genetic mechanisms of diabetes by the use of high-throughput genomics sequencing.
How we will do it?
We offer two alternative projects:
One is to use computational approaches to discover new mechanisms of diabetes in whole-genome sequences from a large cohort of patients with early-onset non-autoimmune diabetes. The successful candidate will lead a specific project, working together with a multidisciplinary team of computational, clinical, and experimental scientists.
An alternative project that is offered is to lead a project that uses genome editing approaches and stem cell differentiation models to understand the underlying mechanisms of noncoding genome defects that cause human diabetes.
Why is this important?
Sequencing of whole patient genomes is rapidly acquiring a central role in modern medicine. Existing strategies have been very successful in identifying disease-causing variants in protein-coding portions of the genome. By contrast, the interpretation of genetic variants in the remaining >98% of the genome, remains largely unsolved. The CRG group has been instrumental in deciphering the role of noncoding variants in polygenic diabetes and rare monogenic diabetes. It has now created patient genome cohorts and experimental models to tackle this problem systematically. These efforts promise to discover new genetic mechanisms, uncover new insights into biological processes that have been disrupted by natural mutations, and understand the mechanisms of disease.
Who is a good fit for the project?
Candidates for the human genetics position should have some previous expertise in programming or statistical analysis.
Candidates for the stem cell modeling project should have experience in cell culture and molecular biology.

Other positions
- IDIBAPS#4 – Mechanisms involved in strenuous exercise-induced atrial myocardial fibrosisDavid Brena2022-06-02T10:51:50+00:00
IDIBAPS#4 – Mechanisms involved in strenuous exercise-induced atrial myocardial fibrosis
- IC#4 – The role polyglutamylation in tauopathic neurodegenerationDavid Brena2022-05-18T16:35:32+00:00
IC#4 – The role polyglutamylation in tauopathic neurodegeneration
- IC#3 – Evaluation of the efficiency of immunotherapy by tracing ctDNA in metastatic NSCLC and triple-negative breast cancer patientsDavid Brena2022-05-18T16:17:43+00:00
IC#3 – Evaluation of the efficiency of immunotherapy by tracing ctDNA in metastatic NSCLC and triple-negative breast cancer patients
- IC#2 – New targetable vulnerabilities for the treatment of chemoresistant breast and ovarian BRCA1/2-mutated tumorsDavid Brena2022-05-25T10:09:18+00:00
IC#2 – New targetable vulnerabilities for the treatment of chemoresistant breast and ovarian BRCA1/2-mutated tumors
- IDIBAPS#3 – Mechanisms involved in vascular inflammation/remodeling in systemic vasculitisDavid Brena2022-05-17T10:38:48+00:00
IDIBAPS#3 – Mechanisms involved in vascular inflammation/remodeling in systemic vasculitis
- IDIBAPS#2 – Mechanisms and therapies for Myeloma, amyloidosis, macroglobulinemia and other gammapathiesDavid Brena2022-05-24T08:49:06+00:00
IDIBAPS#2 – Mechanisms and therapies for Myeloma, amyloidosis, macroglobulinemia and other gammapathies
- IDIBAPS#1 – Developing and investigating computing, machine learning and physiological modelling for understanding each individual heart towards personalised medicineDavid Brena2022-05-17T10:37:53+00:00
IDIBAPS#1 – Developing and investigating computing, machine learning and physiological modelling for understanding each individual heart towards personalised medicine
- BRIC#6 – Tumour evolution, heterogeneity, and understanding of the mutational processes leading to aggressive diseaseDavid Brena2022-05-12T16:57:52+00:00
BRIC#6 – Tumour evolution, heterogeneity, and understanding of the mutational processes leading to aggressive disease
- IC#1 – The role of RNASE1 in lung metastatic niche establishment by breast cancer cellsemerald_SCS2022-05-17T13:59:30+00:00
IC#1 – The role of RNASE1 in lung metastatic niche establishment by breast cancer cells
- MDC#3 – Neuromuscular and Cardiovascular Cell Biologyemerald_SCS2022-05-17T12:04:54+00:00
MDC#3 – Neuromuscular and Cardiovascular Cell Biology
- MDC#2 – Molecular and cellular basis of behavioremerald_SCS2022-05-17T12:05:10+00:00
MDC#2 – Molecular and cellular basis of behavior
- MDC#1 – Host-microbiome factors in cardiovascular diseaseemerald_SCS2022-05-17T12:05:25+00:00
MDC#1 – Host-microbiome factors in cardiovascular disease
- NKI#1 – Epigenetic regulation in hormone-driven cancers and therapy resistanceemerald_SCS2022-05-19T08:58:30+00:00
NKI#1 – Epigenetic regulation in hormone-driven cancers and therapy resistance
- VIB#8 – Mechanisms of inflammation and associated tissue damage in musculoskeletal diseasesemerald_SCS2022-05-16T20:44:33+00:00
VIB#8 – Mechanisms of inflammation and associated tissue damage in musculoskeletal diseases
- VIB#7 – Endothelial immunosuppressive mystery genes for alternative immunotherapy: artificial intelligence-driven target discovery and validationemerald_SCS2022-05-16T20:32:47+00:00
VIB#7 – Endothelial immunosuppressive mystery genes for alternative immunotherapy: artificial intelligence-driven target discovery and validation
- VIB#6 – Cellular metabolism and metabolic regulation in cancer metastasisemerald_SCS2022-05-18T08:52:10+00:00
VIB#6 – Cellular metabolism and metabolic regulation in cancer metastasis
- VIB#5 – Unraveling the molecular mechanisms of neuronal degeneration in motor neuron diseasesemerald_SCS2022-05-16T19:39:35+00:00
VIB#5 – Unraveling the molecular mechanisms of neuronal degeneration in motor neuron diseases
- VIB#4 – Identification of universal biomarkers of metastatic melanoma in CTCsemerald_SCS2022-05-18T08:43:51+00:00
VIB#4 – Identification of universal biomarkers of metastatic melanoma in CTCs
- VIB#3 – Basic mechanisms of Alzheimer’s disease and neurodegenerationemerald_SCS2022-05-16T19:54:56+00:00
VIB#3 – Basic mechanisms of Alzheimer’s disease and neurodegeneration
- VIB#2 – Integrative genomics to underpinning somatic evolution, tumour heterogeneity, and treatment resistanceemerald_SCS2022-05-15T23:07:12+00:00
VIB#2 – Integrative genomics to underpinning somatic evolution, tumour heterogeneity, and treatment resistance
- VIB#1 – Medical biotechnology to improve hepatocellular carcinoma diagnosticsemerald_SCS2022-05-24T08:33:04+00:00
VIB#1 – Medical biotechnology to improve hepatocellular carcinoma diagnostics
- BRIC#5 – The impact of severe maternal respiratory tract infections on fetal brain development and offspring behavioremerald_SCS2022-05-19T18:49:58+00:00
BRIC#5 – The impact of severe maternal respiratory tract infections on fetal brain development and offspring behavior
- BRIC#7 – Understanding and overcoming drug resistance in acute myeloid leukemiaemerald_SCS2022-05-24T08:43:03+00:00
BRIC#7 – Understanding and overcoming drug resistance in acute myeloid leukemia